【和山数学论坛第504期】华南师范大学尤利华教授学术报告

信息来源:   点击次数:  发布时间:2025-10-24

一、报告题目:On determinants of tournaments

二、报告人:尤利华 教授

三、时  间:20251026()19:30---21:30

四、腾讯会议:390-534-555


报告摘要:The determinant of a tournament T is the determinant of the skew-adjacency of T. It is well-known that the determinant of a tournament T with n vertices is 0 if n is odd, and the square of an odd integer if n is even. For odd k>0, the tournament set $\mathcal{D}_k$ consists of tournaments whose all subtournaments have determinant at most k^2.

In 2000, Babai and Cameron [L. Babai, P.J. Cameron, Automorphisms and enumeration of switching classes of tournaments, The electronic journal of combinatorics, 7 (1) (2000) R38] proved that a tournament is switching equivalent to a transitive tournament if and only if it contains no diamonds, which implies $T\in \mathcal{D}_1$ if and only if T is switching equivalent to a transitive tournament. In 2023, Boussaïri et al. [A. Boussaïri, S. Ezzahir, S. Lakhlifi, S. Mahzoum, Skew-adjacency matrices of tournaments with bounded principal minors, Discrete Mathematics, 346 (10) (2023) 113552] characterized $\mathcal{D}_3$ as follows: $T\in \mathcal{D}_3$ if and only if $T$ is switching equivalent to a transitive tournament or a transitive blowup of a diamond.

In this talk, we study $\mathcal{D}_k$ and further questions.


报告人简介:尤利华,博士,教授,博士生导师,先后从事组合矩阵论、图谱理论、张量与超图谱理论、极值图论和结构图论等问题的研究,发表SCI科研论文70余篇,先后主持5项国家自然科学基金,3项广东省自然科学基金和1项广州市科信局基金,2011年入选广州市首批珠江科技新星。


欢迎广大师生参加!联系人:郑璐



Baidu
map